Generalized Minimum Aberration for Asymmetrical Fractional Factorial Designs
نویسندگان
چکیده
By studying treatment contrasts and ANOVA models, we propose a generalized minimum aberration criterion for comparing asymmetrical fractional factorial designs. The criterion is independent of the choice of treatment contrasts and thus model-free. It works for symmetrical and asymmetrical designs, regular and nonregular designs. In particular, it reduces to the minimum aberration criterion for regular designs and the minimum G2-aberration criterion for two-level nonregular designs. In addition, by exploring the connection between factorial design theory and coding theory, we develop a complementary design theory for general symmetrical designs, which covers many existing results as special cases.
منابع مشابه
Generalized Resolution and Minimum Aberration for Nonregular Fractional Factorial Designs
Seeking the optimal design with a given number of runs is a main problem in fractional factorial designs(FFDs). Resolution of a design is the most widely usage criterion, which is introduced by Box and Hunter(1961), used to be employed to regular FFDs. The resolution criterion is extended to non-regular FFG, called the generalized resolution criterion. This criterion is providing the idea of ge...
متن کاملMaximal Rank - Minimum Aberration Regular Two-Level Split-Plot Fractional Factorial Designs
Regular two-level fractional factorial designs are often used in industrial experiments as screening experiments. When some factors have levels which are hard or expensive to change, restrictions are often placed on the order in which runs can be performed, resulting in a split-plot factorial design. In these cases, the hard or expensive to change factors are applied to whole plots, whereas the...
متن کاملSome optimal criteria of model-robustness for two-level non-regular fractional factorial designs
We present some optimal criteria to evaluate model-robustness of non-regular two-level fractional factorial designs. Our method is based on minimizing the sum of squares of all the off-diagonal elements in the information matrix, and considering expectation under appropriate distribution functions for unknown contamination of the interaction effects. By considering uniform distributions on symm...
متن کاملAlgorithmic Construction of Efficient Fractional Factorial Designs With Large Run Sizes
Fractional factorial designs are widely used in practice and typically chosen according to the minimum aberration criterion. A sequential algorithm is developed for constructing efficient fractional factorial designs. A construction procedure is proposed that only allows a design to be constructed from its minimum aberration projection in the sequential build-up process. To efficiently identify...
متن کاملRecent developments in nonregular fractional factorial designs
Nonregular fractional factorial designs such as Plackett-Burman designs and other orthogonal arrays are widely used in various screening experiments for their run size economy and flexibility. The traditional analysis focuses on main effects only. Hamada and Wu (1992) went beyond the traditional approach and proposed an analysis strategy to demonstrate that some interactions could be entertaine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001